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Abstract—Spiking Neural Networks (SNNs) have attracted sig-
nificant attention from the research community due to their high
energy efficiency compared to Artificial Neural Networks (ANNs).
However, rare studies on the security of SNNs were conducted,
especially in backdoor attacks. Existing defense methods for ANN
backdoor attacks either perform poorly or can be easily bypassed
in SNN scenarios due to SNNs’ event-driven and temporal de-
pendency characteristics, posing significant research challenges.
In this paper, we identify the blockers to existing backdoor
defenses for defending against attacks in SNNs and propose an
unsupervised post-training backdoor detection method named
Temporal Membrane Potential Backdoor Detection (TMPBD)
to address those blockers in SNNs with neuromorphic data.
Specifically, TMPBD employs the maximum margin statistic
of temporal membrane potential in the last spiking layer of
the SNNs to detect attack target labels without knowledge of
the attack or access to any data. Moreover, we also design
a practical and robust mitigation mechanism named Neural
Dendrites Suppression Backdoor Mitigation (NDSBM). NDSBM
dually clamps the neural dendrites, i.e., the weights connecting
the first two convolution layers in each convolution block to limit
the backdoor effect, while preserving the benign model behaviors
learned from the temporal membrane potential obtained from a
small, clean, unlabeled dataset in the same domain. To evaluate
the performance, we conduct a comprehensive evaluation with
multiple backdoor attack techniques, including the SOTA input-
aware dynamic trigger attack dedicated to SNNs with clean
models on three neuromorphic benchmark datasets. The results
demonstrated that TMPBD achieves 100% prediction accuracy in
detecting dynamic trigger attacks and associating attack target
labels in all benchmark datasets. NDSBM lowered the attack
success rate (ASR) from 100% caused by the dynamic trigger
attack down to 8.44% with only mitigation or 2.81% when
combined with detection for an end-to-end pipeline without
performance degradation in clean accuracy.

Index Terms—Spiking Neural Networks, Backdoor Attacks,
Poisoning, Defenses

I. INTRODUCTION

Spiking Neural Networks (SNNs) [1]–[4], inspired by the
biological neural processes of the human brain [3], [5], are
a promising alternative to Artificial Neural Networks (ANNs)
due to their spatio-temporal, discrete representation, and event-
driven properties that significantly reduce power consumption

[6], [7]. A recent study [8] suggests that SNNs can achieve
12.2 times energy efficiency compared to ANNs with a similar
number of parameters. Performance was once the weakness of
SNNs but not anymore under recent technological leaps, with
major milestones achieving performance comparable to ANNs
[2] in complex tasks such as autonomous driving [9], [10],
computer vision [11], speech recognition [12] and medical
diagnosis [13]. SNNs were naturally designed to work with
neuromorphic data captured by Dynamic Vision Sensor (DVS)
cameras [14]. Unlike traditional cameras, which capture the
absolute brightness of RGB lights at a constant frame rate, the
DVS camera captures independent discrete events that describe
the change in light intensity at certain pixels. The event-driven
and sparse nature of events enables the neuromorphic data
to improve energy efficiency and temporal resolution while
minimizing latency.

Despite the advantages, SNNs remain vulnerable to a range
of security threats faced by ANNs [15], [16], notably insidious
backdoor attacks [17]. In a backdoor attack, an adversary
injects a hidden trigger during training so that the model
produces an attacker–specified output whenever the trigger is
present, while behaving normally on trigger-free inputs [18].
Such covert manipulation can undermine model integrity in
mission-critical applications, e.g., allowing an attacker to
bypass the facial-recognition security checkpoint [19].

Research in backdoor attacks in SNNs has made great
progress, with the state-of-the-art (SOTA) dynamic trigger
backdoor attack designed for neuromorphic data in SNNs
achieving 100% attack success rate (ASR) with negligible
degradation in clean accuracy (CA) and undetectable to hu-
man inspection [17]. However, to our best knowledge, the
research on backdoor defense in SNNs is remarkably scarce,
where there are no dedicated backdoor defense frameworks
proposed for SNNs. The existing defenses adopted from ANN
to SNN are poorly performed or can be easily passed by
adaptive attacks [17], [20], [21]. The main challenge comes
from the fundamental difference in neuron behavior and data
format from neuromorphic data in SNNs to static images in
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ANN, requiring a complete redesign of the backdoor defense
algorithm, specifically accommodating the characteristics of
SNNs.

In this paper, we first investigate the deficiencies of ex-
isting ANN backdoor defenses. Then we propose the first
full-lifecycle backdoor detection and mitigation framework
dedicated to SNNs in a strictly practical, data-free setting. The
proposed Temporal Membrane Potential Backdoor Detection
(TMPBD) innovatively uses temporal membrane potential
(TMP) and maximum margin (MM) statistics-based anomaly
detection to detect the backdoor attack target label. The
proposed Neural Dendrites Suppression Backdoor Mitigation
(NDSBM) uses clamping-based mitigation to reduce the back-
door effect.

To ensure robustness and practical relevance, we conducted
a comprehensive experiment on proposed frameworks and
discussed potential threats to validity.

In summary, our contribution includes:
• We adopt several renowned backdoor defense strategies in

ANNs to SNNs and analyze the challenges blocking them
from being as effective in SNNs. Based on those findings,
we propose innovative designs to solve the identified
challenges to defending against backdoor attacks in SNNs
with neuromorphic data.

• We propose TMPBD, a novel data-free, unsupervised
backdoor detection strategy based on the TMP’s MM
statistic, which reaches 100% attack label detection ac-
curacy on models poisoned by various backdoor attacks
without access to any data.

• We propose NDSBM, a novel unsupervised backdoor
mitigation strategy based on clamping the weights of
the connection, also known as neural dendrites in SNNs,
between the first two convolution layers in each con-
volution block of the model. NDSBM is capable of
lowering the ASR from 100% down to 8.44% on average
against dynamic trigger attacks. In addition, we utilize the
end-to-end backdoor defense pipeline for both proposed
backdoor detection and mitigation strategies to further
reduce the ASR under SOTA dynamic trigger attack to
2.81% on average while achieving higher CA.

• We comprehensively evaluate the proposed backdoor
defense strategies against the existing defense methods
adopted for ten repetitions with multiple attack types and
variant datasets.

• We critically discuss the scalability and robustness of the
proposed methods against imbalanced datasets and adap-
tive attackers and provide indicative solutions to false-
positive, intrinsic backdoor, and all-to-all attack issues
when additional information are available.

II. PRELIMINARIES

This section introduces the essential terminologies, con-
cepts, and notations of SNNs and backdoor attacks to sup-
plement the preliminary knowledge needed for the subsequent
paper sections.

A. Spiking Neural Network

The SNNs are described as the third generation of neural
network machine learning models known for improved energy
efficiency over their predecessor, ANNs [22]. As a class
of deep neural networks, SNNs inherit the same network
structures from fully connected ANNs, with interconnected
input, hidden, and output layers. Inspired by biological neurons
[6], [7], the neurons in SNNs emit discrete spike events to
pass the information enclosed in spike timing [2]. The neurons
emit spikes only when the accumulated input current exceeds
the threshold [23]. In contrast, ANNs transmit information in
continuous-valued signals and employ activation functions to
capture non-linear relationships [24]. To simulate SNNs on
modern computers with the Von Neumann architecture, it is
a common practice to simplify the operation by discretizing
the time. Where the behavior of spiking neurons following
the representative Leaky-Integrate-and-Fire (LIF) model can
be described mathematically [4] as follows :

Ht = Vt−1 +
1

τ
(Xt − (Vt−1 − Vreset)) (1)

St = Θ(Ht − Vthreshold) (2)

Θ(x) =

{
1, x ≥ 0

0, x < 0
(3)

Vt = Ht · (1− St) + Vreset · St (4)

Equation (1) describes the dynamics of a leaky integrate-
and-fire (LIF) neuron: the membrane potential Vt, an internal
state that integrates the input and leaks over time. Here,
Ht denotes the instantaneous (pre-spike) membrane potential
after integration/charging and before firing, Xt is the input
at time t, and Vt−1 is the post-spike membrane potential
from the previous time step. The membrane time constant
τ governs the decay of the potential toward the reset value
Vreset. The parameters Vreset and Vthreshold are fixed properties
of the neuron. Equations (2)–(3) specify the spike-generation
and reset rules: the neuron emits a spike (St = 1) if and only
if Ht ≥ Vthreshold; upon spiking, the membrane potential is
reset to Vreset.

In the input layer, Xt denotes the input from the neuro-
morphic data captured by DVS cameras [14]. A DVS camera
is different from a regular camera in that it captures absolute
RGB brightness at a constant rate for all pixels. The DVS
camera captures a series of events asynchronously. The event
contains information on per-pixel brightness changes. An
individual event can be described by set (t, x, y, p), which
denotes the event’s timing, the pixel’s x-y coordinate, and
polarity. The polarity indicates the direction of change in
brightness, lighter or darker.

In hidden layers, the input Xt =
∑

j WijSj,t is the
weighted sum of outputs from nodes in the previous layer.
The Wij are the learnable weights representing the strength
and direction of the connection from neuron j in the previous
layer to i. In the training stage, surrogate gradients [25] that



approximate a derivative of Equation (3) enable backpropaga-
tion training on SNNs with Adam [26] or stochastic gradient
descent [27] where the latter one is more popular for better
performance [28] thus utilized in this research.

In the output layer, the output of SNNs, the firing rate
(FR), equivalent to logits in ANNs, is represented as FR =
1
T

∑T
t=1 St. Taking the Softmax of the FRs provides the label

probability distribution for classification problems.

B. Backdoor Attack

The Backdoor Attack is one of the major security threats
to machine learning models. A malicious attacker embeds a
hidden trigger into a model during training, causing the model
to misclassify specific inputs at inference time when the trigger
is present.

In a general ML pipeline, the classifier h(x,D) =
argmaxy p(y|x,D) is trained to infer the most probable
label based on the input sample x, and the training set
D = {(x1, y1), . . . , (xn, yn)} [29]. During a data poisoning-
based dirty label all-to-one backdoor attack, the adversary
manipulates the training data by adding a set of trigger patterns
from the set Ωx to a subset of samples and incorrectly labeling
them as the attack target label ỹ. Each sample-specific trigger
pattern δi from the trigger pattern set Ωx can be a pixel pattern,
a color patch, or a specific shape. The poisoned data set with
r poisoned samples out of n total samples is denoted below:

DBD(Ωx, ỹ) = {(xi + δi, ỹi)}ri=1 ∪ {(xi, yi)}ni=r+1 (5)

As a result, the classifier trained on this poisoned dataset
is compromised and denoted as: h(x + Ωx,DBD(Ωx)) = ỹ.
At inference time, the compromised classifier will misclassify
the input as the nominated attack target class (ATC) ỹ when
the trigger is presented. The attacker would carefully craft
the trigger pattern Ωx and decide on a poison rate r

n that
maximizes the performance of the attack, evaluated by the
ASR denoted below:

max
Ωx,r

ASR =

∑r
i=1 1 [h(xi + δi,DBD(Ωx)) = ỹ]

r
(6)

In addition to maximizing the ASR, the attack is also
motivated to maintain the model prediction accuracy on its
originally designed task to ensure the poisoned model is being
deployed by the victim smoothly without arousing suspicion.
The performance of the model on the original task is evaluated
by CA, as indicated below:

max
Ωx,r

CA =

∑n
i=r+1 1 [h(xi,DBD(Ωx)) = yi]

n− r
(7)

To avoid attack trigger patterns being detected by pattern
recognition defense algorithms or human inspection [30], the
trigger patterns are usually motivated to minimize the L2 norm
to ensure the stealthiness of the attack as denoted below:

min
Ωx

∥Ωx∥p s.t. h(x+Ωx,DBD(Ωx)) = ỹ, ∀x ∈ Dclean (8)

The evaluation metric on stealthiness varies depending on
the data format in the different problem domains, where the

mean square error (MSE) [31] between the original and poison
samples is commonly employed in the image domain. The
structural similarity index metric (SSIM) is popular among
neuromorphic data [17].

Although the existing literature on backdoor attacks in
SNNs is less than that of ANNs, existing research has suc-
cessfully adopted several backdoor techniques from ANNs to
SNNs with modification and achieved excellent performance.
The consistency of effectiveness between SNNs and ANNs is
because backdoor attacks mainly exploit the training process,
where SNNs train similarly to ANNs with surrogate gradients
[25]. One of the adopted backdoor attacks on SNNs is the
static trigger attack proposed in [20] inspired by the classic
BadNet [18], aiming to conduct a content-independent fixed
backdoor pattern attack with the poisoned dataset denoted as:

DBD(Ωx, ỹ) ={
(xt

i + δi, ỹ)
}r,T
i=1,t=0

∪
{
(xt

i, yi)
}n,T
i=r+1,t=0

(9)

The backdoor pattern Ωx is constant in size, position, and
polarity across all poisoned input xi in all time frames t
and often replaces the original value in the patched pixels.
Attackers make a trade-off between a bigger patch size for
higher ASR but lower stealthiness, or vice versa.

The current SOTA attack is the dynamic backdoor attack
[17] inspired by the input-aware attack in ANNs [32], [33].
The dynamic attack is specifically designed for SNNs with
machine-generated trigger patterns δti from Ωt

x(xi) that cus-
tomize the sizes, positions, polarities, and distributions of the
overlay pattern uniquely for each input sample xi at each time
frame t. The dynamic trigger pattern is designed to bypass
human inspection and pattern recognition-based machine de-
tection during the inference stage. The compromised dataset
with the dynamic trigger is denoted below:

DBD(Ωt
x(xi), ỹ) ={
(xt

i + δti , ỹ)
}r,T
i=1,t=0

∪
{
(xt

i, yi)
}n,T
i=r+1,t=0

(10)

For the original paper by Abad et al. [17], the authors demon-
strated that their proposed dynamic trigger pattern backdoor
attack achieved up to 100% ASR, with negligible degradation
in CA. In addition, the excellent stealthiness of the dynamic
trigger patterns bypassed all human detection and posed a
tremendous threat to the security of the SNN models.

III. PROBLEM FORMULATION

This section introduces the setting and scenarios of the
security risk that the paper proposes to defend.

A. System Model

In this paper, we consider a classical pre-trained model
adoption scenario. We focus only on SNN models that take
neuromorphic data as input and perform classic and common
classification tasks.



1) Model provider: The model provider independently de-
velops the SNN model and shares trained models with the
model consumer.

• The model provider fully controls training data, including
knowledge and modification capability.

• The model provider fully controls the model training pro-
cess, including model structure design, hyperparameter
tuning, optimization, and training schedule.

• The model provider only shares the weight of the trained
model, but not the training data due to the scarcity and
sensitivity of the critical domain [34] of the neuromorphic
data.

2) Model consumer: The model consumer acquires pre-
trained SNN models from the model providers and deploys
the models for inference, often referred to as MLaaS [35].

• The model consumer is incapable of independently col-
lecting sufficient labeled neuromorphic data for training.

• The model consumer has no access to neuromorphic
hardware such as an Intel Loihi [36] or Von Neumann ar-
chitecture computer with sufficient computational power
to independently train an SNN model.

• The model consumer may be able to collect a small
amount of unsellable data in the problem domain.

B. Threat Model

The paper considers the security risk of a backdoor attack in
SNN models obtained from an untrustworthy model provider.
Highlighting the more practical data-free assumption for back-
door detection and the label-free assumption for backdoor
mitigation distinguishes our research from previous literature.

1) Attacker’s Goals and Capabilities Assumptions: This
paper considers the model provider as the attacker aiming
to conduct a classical data poisoning-based, dirty-label all-to-
one backdoor attack against the model consumer. The attacker
is motivated to exploit the victim’s system by triggering the
compromised model to perform abnormally in a predefined
way, such as bypassing the facial recognition security check
[19]. The attack focuses on the goal of successfully conducting
a backdoor attack while avoiding suspicion from the defender,
that is, maximizing ASR and CA with a lower L2 norm of the
attack pattern.

This research follows the classical assumption of the at-
tacker’s capabilities from previous studies [17], [18], [20],
[33], [37], [38].

• The attacker has full access to modify the model training
process to suit the attack goal.

• The attacker has full access to freely modify the training
data and the corresponding labels digitally to suit the
attack goal.

• The attacker has sufficient knowledge and computational
resources to perform the latest and most advanced back-
door attack strategies. Such as the SOTA dynamic trigger
pattern attack [17] to maximize the effectiveness and
stealthiness of the attack shown in Equation (10).

2) Defender’s Goals and Capabilities Assumptions: This
paper considers the model consumer to be the defenders
motivated by maintaining the acquired model function as
expected. The defender aims to perform a post-training model-
based backdoor detection to identify a composed model con-
taining a backdoor. The defender has the goal of detecting
the backdoor attack and the corresponding ATC with high
detection accuracy. The defender can use alternative models
if the backdoor attack is detected and alternative models
are available for the same problem domain. Otherwise, if
replacement classifiers are not available, the attacker would
want to mitigate the compromised model by suppressing the
backdoor attack. Backdoor mitigation aims to reduce ASR
while maintaining CA as high as possible.

This research follows a more strict and practical assumption
on a less powerful defender than mainstream research on post-
training defense. The motivation is to improve the robustness
of the proposed defense so that it is also applicable to other
relaxed scenarios.

• The defender has white-box access to the SNN model.
• The defender has no prior knowledge of the existence of

the attack, the type of attack, or the attack target label.
• The defender has no access to the training data, clean or

poisoned, used to train the model.
• The defender has no access to clean reference models

from the same domain; otherwise, they would deploy
such model directly.

• Unlike the classical setting, the defender is incapable of
collecting any data in the problem domain during the
backdoor detection.

• The defender is capable of collecting a small set of
unlabeled data in the same domain during backdoor
mitigation.

IV. TEMPORAL MEMBRANE POTENTIAL BACKDOOR
DETECTION

In this section, we propose TMPBD, a data-free unsuper-
vised backdoor detection framework. TMPBD detects if there
is a backdoor attack embedded in the trained SNN model
and its corresponding attack target label. The TMPBD utilizes
unsupervised hypothesis testing to identify abnormally high
decision boundaries from the backdoor ATC to the benign
classes. We innovatively quantify the prediction confidence of
SNNs with TMP and quantify the decision boundaries with
MM. The MM is estimated by generating and optimizing the
synthetic input that maximizes the MM. In this section, we
present the design rationales, supported by both conceptual
reasoning and empirical results, and demonstrate detailed
implementation procedures.

A. Design Intuition

First, we show that the presence of a backdoor is associated
with abnormal overfitting, manifested as inflated prediction
confidence for the attack target class. To achieve the attack
objective, a trigger (pattern) with a small spatiotemporal foot-
print is crafted to exert a disproportionately large influence,
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Fig. 1: Membrane potential over time for the attack target class
(ATC, red) in (a) backdoor and (b) clean models, averaged over
the clean test set.

steering the model toward the target class. For the backdoor
attack to succeed on triggered inputs, its effect must dominate
the sample’s genuine class-discriminative features so that a
triggered sample is not classified as its true class. This “small
fraction of data, large effect” phenomenon induces overfitting
that can persistently bias the model, sometimes even visible
on clean or random inputs.

Figure 1 illustrates this effect using membrane potential as
a proxy for prediction confidence for class 0 (bold red curve).
In the poisoned model, the red curve is markedly higher than
the others, indicating a systematic bias toward the target class
even when the inputs are trigger-free. In the clean model, the
red curve is indistinguishable from the rest.

The example shown uses a static backdoor under the default
configuration from prior work [17] (see Appendix C) on the
DVS128-Gesture dataset, but the theorem is not tied to this
attack type; the detection mechanism we derive from it remains
effective across diverse backdoor variants in the experiments
below. Secondly, we justify the intuition behind using the
TMP as the quantitative representation of the confidence of
prediction. The TMP indicating 1

T

∑T
t=0 V̂c,t(x) is the average

membrane potential over the timestamp of neurons from the
last spiking layer. TMP also averages the membrane potential
on all neurons corresponding to the same output label because
of the common practice of adding a voting layer after the
output spiking layer to increase robustness by having multiple
output neurons correspond to the same output label vote
for the final decision in SNNs [4]. The empirical studies
in Figure 1 have shown the effectiveness of the membrane
potential in capturing the confidence in prediction. TMP aims
to concentrate the membrane potential series, the red trending
line, into a single value.

We argue that the proposed TMP is a more effective
measurement of prediction confidence than commonly used
alternatives, namely, firing rate (FR) and the highest mem-
brane potential (HMP). In spiking neural networks (SNNs),

c0
(ATC)

c1

c2
c3

c4

c5

c6

c7

c8
c9

c10

c0
(ATC)

0.00
0.04

0.08
0.12

0.16

(a) FR per Class

c0
(ATC)

c1

c2
c3

c4

c5

c6

c7

c8
c9

c10

c0
(ATC)

−5
−4
−3
−2

High TMP
on ATC

(b) TMP per Class

Clean Model TMP Backdoor Model TMP

Fig. 2: Class-wise (a) firing rate (FR) and (b) temporal mem-
brane potential (TMP) between clean and backdoor models,
averaged over the clean test set. Each axis corresponds to one
of the 11 classes (c0–c10), where c0 is the attack target class
(ATC).

FR is often considered analogous to the concept of logits
in artificial neural networks (ANNs), where logits represent
the pre-softmax activation values of the final layer. While
logits are widely utilized in existing backdoor defense tech-
niques, they do not naturally exist in SNNs due to their
threshold-based nonlinearity. This makes FR a limited proxy
for prediction confidence, as it merely reflects time-averaged
spike counts rather than fine-grained membrane dynamics. To
validate our hypothesis, we extend the empirical analysis and
demonstrate that TMP more effectively captures backdoor-
induced overfitting than FR, as illustrated in Figure 2. As
shown in Figure 2, the FR values averaged over the clean
test set do not exhibit a notable difference between the clean
and backdoor models. In contrast, TMP shows a pronounced
gap at class c0, corresponding to the ATC. This suggests that
while the backdoor fails to trigger sufficient spiking activity
to alter FR, it still results in significantly elevated membrane



Clean Static Dynamic
HMP 80% 90% 100%
TMP 90% 100% 100%

TABLE I: Backdoor detection accuracy (%) of HMP and TMP
on the DVS128-Gesture dataset.
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Fig. 3: Boxplot of p-values for hypothesis testing under differ-
ent attack types, using highest membrane potential (HMP) and
temporal membrane potential (TMP) as prediction confidence
measures.

potential toward the target class. This supports our claim that
TMP provides a finer-grained and more sensitive view of the
backdoor effect, revealing confidence shifts that FR fails to
capture.

To demonstrate that TMP is a better design choice than
HMP, we performed a small-scale backdoor detection exper-
iment comparing backdoor detection behavior and accuracy
between TMP and HMP on the Gesture-DVS benchmark
dataset with static and dynamic attack patterns [17] and a
clean control group. Table I shows that the backdoor detection
employing TMP exhibits better prediction accuracy compared
to that of HMP. To be more precise, the box plot showing
the distribution of p-value in backdoor detection with HMP
and TMP is shown in Figure 2. We observe that having a
higher p-value for the clean model and a lower value for
poisoned models is better. Overall, the TMP-based algorithm is
more accurate in prediction and more confident in such correct
prediction, reflected as the distribution is farther away from the
decision boundary at 0.05, denoted as the dotted red horizontal
line. Finally, we adopt MM statistics to characterize decision-
making under synthetic stimuli. Because the TMP distribution
differs across models and datasets, we detect anomalies in the
MM of the TMP, not in the raw TMP, ensuring robustness
to pseudo-sample bias and eliminating any need for real data.
Here, we seek a synthetic input x whose margin between the
ATC and all other classes exceeds any margin among non-ATC

pairs. In SNNs, this condition is formalized as:

max
x∈X

[
1

T

T∑
t=0

V̂a,t(x)− max
k∈Y\a

1

T

T∑
t=0

V̂k,t(x)

]

≫ max
x∈X

[
1

T

T∑
t=0

V̂c,t(x)− max
k′∈Y\c

1

T

T∑
t=0

V̂k′,t(x)

]
(11)

Where a ∈ Y denotes the backdoor ATC and c ∈ Y \ a
represents any of the benign labels. V̂a,t(x) here denotes the
membrane potential value at time t in the neuron of the last
spiking layer that corresponds to the output class a. This
observation forms the backbone of our proposed backdoor
detection strategies.

B. Detection Procedure

The procedure of the proposed unsupervised data-free back-
door detection method comprises two parts: the estimation
stage and the detection stage.

Estimation stage aims to generate and optimize the neu-
romorphic samples input independently for each label to find
and estimate the MM statistics for the TMP corresponding to
each class c ∈ Y . The MM statistics for TMP are denoted as
rc and estimated by using gradient descent to solve:

rc = max
x∈X

(
1

T

T∑
t=0

V̂c,t(x)− max
k∈Y\{c}

1

T

T∑
t=0

V̂k,t(x)

)
(12)

The x optimization via gradient ascent is guaranteed to con-
verge smoothly to the local maximum in our experimental
setting. Thus, we follow the common practice of optimizing
multiple uniformly randomly initialized samples in parallel to
estimate the global maximum with the largest local maximum.
This guarantee was from Theorem 3.2 in [39] that the TMP
is bounded and Lipschitz, since the input data x is a closed
convex set. This theorem has been thoroughly illustrated and
proven in the ANNs realm with RGB image input [40], and
we argue that the theorem holds true after porting it into the
SNNs realm with neuromorphic data.

The DVS camera has a circuit time constant τ that describes
the reaction time depending on the hardware, usually varying
from 1-100 ms [41]. The time constant for which discretization
continues stream events into instantaneous events. With this
minimal gap between events, there is an upper bound for the
number of events within a fixed total capturing time. The upper
bound on the total number of events is carried over as the upper
bound on the event count at each frame after integration into
T time frames. The count is nonnegative and bounded, so
that the linear combination of frames falls in the same range,
making it a closed convex set, the same as the RGB image.
On the other hand, the membrane potential V̂c,t(x) is bounded
by Vthreshold and reflects the accumulation of discrete bounded
inputs. Therefore, the TMP is also bounded and Lipschitz.

Detection stage conducts the anomaly detection framework
proposed in the paper by Xiang et al. [42] utilizing hypothesis
testing based on Gamma distribution. The hypothesis test
compares the chance that the largest MM in all classes



rmax = maxc∈Y rc fits as the largest value of the distribution
of the rest of the MM rrest = {rc | c ∈ y, rc ̸= rmax}. We have
a hypothesis test with:

H0 : rmax ∼ Gamma(rrest), no attack.
Ha : rmax ̸∼ Gamma(rrest), attack exist.

Thus, we compute the order statistic p-value:

p-value = 1−H0(rmax)
K (13)

Here H0(rmax) denotes the probability of rmax belonging to the
null distribution calculated from the Cumulative Distribution
Function (CDF). Powered by K, the number of classes for
order statistics due to rmax was the maximum value among
multiple statistics instead of individual statistics.

The calculated p-value or false positive rate describes the
chance of false rejection H0. The equivalent of predicting the
model is compromised when the model is actually clean. The
p-value is then compared with the classical significance level
α = 0.05. If the p-value < 0.05, the null hypothesis is rejected,
suggesting that there is a backdoor attack in the model with
an ATC associated with rmax. Otherwise, there is no attack.

V. NEURAL DENDRITES SUPPRESSION BACKDOOR
MITIGATION

In this section, we propose NDSBM, a novel unsuper-
vised backdoor mitigation technique for the scenario when
the defender has no access to alternative models other than
the detected compromised model. The method requires the
defender to be capable of collecting a small amount of clean
unlabeled data from the same problem domain. The proposed
mitigation is based on the idea that the abnormally overfitted
large TMP in the last spiking layer is accumulated from the
slightly higher than normal output of neurons in the early
layers associated with attack trigger patterns. By suppressing
such effect, we can effectively ”unlearn” [43] the backdoor
behavior embedded in the poisoned model.

A. Design Intuition

Although clamp-based mitigation has been explored in ANN
[40]. We still face a number of technical challenges. In
ANN, the defender clamps on the activation value, which
is impossible in SNN, as the neuron output is binary. The
clamping on the membrane potential is also impossible, as
it is already clamped by Vreset and Vthreshold. Therefore, we
creatively clamp the input to the neurons. In SNN, the input
of a neuron is equivalent to the weight of neural dendrites
connecting neurons of two layers that control the decay of the
neural signal. Mathematically, that is due to the only non-zero
output from the previous layer being multiplied by the weight
being one.

The activation value in ANN is guaranteed to be non-
negative by the nature of the ReLU activation function [24].
In contrast, the weights in SNN can be negative. We chose
to dually clamp with distinct floor and ceiling values. There
exist alternative approaches: max clamping, which only has a
ceiling, and absolute clamping, which floor has negative but

the same magnitude as the ceiling. The empirical compari-
son between performance across different design choices is
discussed in the main experiment in Table III.

B. Mitigation Procedure

The proposed NDSBM introduced dual clamping layers
after the first convolution layer of each convolution block
to clamp the input value Xt to neurons after the clamping
layer. The values are clamped between the ceiling C and the
floor F to mitigate the backdoor effect early on. This adds the
additional clamping layer on top of the normal behavior of the
LIF neuron from Equation (1) to:

Hclamp,t(C,F) =

Vt−1 +
1

τ
(max(F,min(C, Xt)− (Vt−1 − Vreset)) (14)

Please note that in SNNs, the output of spiking neurons Sj,t

can only take the value of 1 if a spike and 0 otherwise.
This behavior is described in Equations (2) and 3. Therefore,
clamping Xt,i is clamping the weight Wij describing the
direction and strength of the neural dendrite, or the connection
between neurons in contiguous layers. By narrowing the
clamping range, mitigation is more likely to filter out abnormal
weights that relate to the backdoor pattern, but also increases
the chance of falsely clamping clean weights. Therefore, the
small clean set is used to observe the behavior of the model
and to find suitable clamping parameters C,F to balance
the degradation in CA and reduce the amount of ASR. The
parameters are obtained by optimizing the following loss
function:

Lbase
(
C,F, λ;D

)
=

1

|D| |Y|
∑

(x,y)∈D

∑
c∈Y

[( 1

T

T−1∑
t=0

V̂clamp,c,t(C,F)
)2
−
( 1

T

T−1∑
t=0

V̂c,t

)2]

+ λ

L∑
l=1

(
∥cl∥2 + ∥fl∥2

)
. (15)

CA is maintained by ensuring the same distribution of TMP
on clean samples. The clamp covers L convolution blocks
to mitigate backdoor patterns in both the pixel and feature
space. The clamping parameters are sufficiently large, so no
clamping takes effect at the beginning. They are gradually
reduced and motivated by the L2 norm loss term to narrow
down the clamping range to filter out abnormal weights for low
ASR goals. The weight term λ helps to balance the conflict
in achieving both goals.

C. Full-Life-Cycle-Defense

NDSBM can be further strengthened when cooperating with
TMPBD. The end-to-end strategy starts by detecting the po-
tential target label of the attack. The method flags the samples
that are predicted to the target label by the original classifier.
The clamped model is applied only to the suspicious sample.
The idea is to avoid unnecessary mitigation on trustworthy
samples.



VI. EXPERIMENT

To ensure the effectiveness of our proposed defense, we
follow the optimal experimental setup suggested in the orig-
inal SOTA attack paper [17], including model architecture,
training protocols, and attack configurations. In the optimal
setting, all attacks tested in the experiment: static, moving
[20], and dynamic [17] backdoor attacks reach 100% ASR
with near-negligible CA degradation. Note that the smart
trigger backdoor attack [17] is discarded from the experiment
because it is not maintained by 100% ASR on all datasets.
We benchmark on the three widely recognized neuromor-
phic benchmark datasets, which are DVS128-Gesture [44],
CIFAR10-DVS [45], and N-Caltech101 [46], for complete
validation on generalizability and robustness of the method.
The proposed algorithm is implemented on the Spikingjelly
neuromorphic computing framework [47] known for its univer-
sality on both the Von Neumann architecture platform and the
neuromorphic platforms [36], boosting the practical relevance
of the proposed defense.

For each combination of attack method and dataset, we
repeat the experiments ten times to ensure the robustness of
the results. Each run uses a different attack target label to
ensure that the choice of target label does not influence the
results. DVS128-Gesture data attacks on the first ten labels.
CIFAR10-DVS data attacks on all ten labels. N-Caltech101
attack on randomly selected ten labels. With random seed 42,
selected classes include: [81, 14, 3, 94, 35, 31, 28, 17, 13, 86].
The ten clean repeated models for the control group are
trained with different random seeds from zero to nine. All
other randomness processes are configured with the same
classical random seed 42 to ensure the reproducibility of the
experiment.

For reproducibility, the complete source code for all im-
plementations and experiments is publicly available at https:
//github.com/alexjiachenli/TMPBD-NDSBM.

A. Backdoor Detection

In this section, we evaluate the backdoor detection ac-
curacy and attack label detection accuracy of our proposed
TMPBD compared to the ANN defense adopted as the
baseline. Although theoretical deficiencies prevented existing
ANN backdoor defenses from working effectively on SNNs
have been explored. Due to a lack of detailed experimental
results or open-sourced implementations. We re-implement the
existing defense to empirically validate the deficiencies. The
ANN backdoor detection methods adopted for SNN in this
experiment are NC [48], ABS [49], Neuron Simulation (NS),
and MMBD [40]. Each defense is evaluated in 12 scenarios,
combining three data sets with four model conditions (three
attacks and one clean control group). Each scenario is repeated
ten times to ensure robustness. The detection accuracy is cal-
culated from the ratio of correct detections from 10 repetitions.
The detection hyperparameters are chosen on the basis of the
VRAM limit and the convergence speed of the data sets. Here
we initialize 3 parallel synthetic inputs and optimize for 5000
epochs.

To ensure that the experiment on our adoption of the ANN
defense is reproducible, we introduce the defense configuration
in the following list. The information is also available in our
published source code.

• In NC [48], for each label c ∈ Y , we uniformly randomize
a learnable putative trigger in the same dimension as the
data x with a value ranging from 0 to 0.1. We regularize
the trigger by the L1 norm during optimization. We used a
Median Absolute Deviation (MAD) threshold of 2 for the
anomaly detection, which is equivalent to the confidence
level 95% in the normal distribution. We use FR for
computing binary cross-entropy in the loss function.

• We adopt ABS [49] differently from the previous litera-
ture [17]. For each neuron in the last layer, we generate
and optimize a synthetic input to maximize the FR of
the neuron. The synthetic input is generated in the same
way as a putative trigger in NC. During optimization,
additional clamping is implemented in the range [0, 1] to
match the range of non-negative legal input. We calculate
the average FR of each neuron after taking all synthetic
inputs and mark the neuron suspicious if the average FR
exceeds the threshold, which is 95% percentile in our
implementation. The ABS then generates a putative trig-
ger that can maximize the FR of all suspicious neurons.
Finally, the algorithm clips the putative trigger on the
clean dataset and checks whether a variation in model
prediction results from the trigger.

• NS is not an existing standalone defense, but the suspi-
cious neutron detection part in other defense frameworks
such as ABS [49] or fine-pruning [50]. We consider it
as a standalone defense, as it does not require access to
clean samples. We interpret the non-empty output of the
suspicious neuron list as a backdoor detected with attack
labels associated with suspicious neurons.

• In MMBD [40], we replace logits with FR. We initialize
three samples uniformly between 0 and 1 to optimize in
parallel for a maximum of 5000 epochs to incorporate the
additional memory and complexity of the neuromorphic
data.

The results of the experiment are shown in Table II. Our pro-
posed defense outperforms all existing defenses in detecting
the existence of backdoors and attack labels on compromised
models and falls short only by a small margin in detecting
clean models. Among the adopted defenses, the two back-
door pattern reverser engineer-based detections, NC and ABS,
despite having additional access to a small clean sample,
have failed catastrophically. The NC makes dataset-specific
predictions independent of the attack type. The NC predicts
no attack for all DVS128-Gesture data, attack target label 2 for
all CIFAR10-DVS models, and attack on label 89 for all N-
Caltech101 models. However, ABS has successfully identified
numerous suspect neurons associated with output labels, but
failed to validate the existence of backdoor attacks with the
putative trigger pattern. As a result, ABS predicts that all
models are clean. This indicates that the failure of the reverse

https://github.com/alexjiachenli/TMPBD-NDSBM
https://github.com/alexjiachenli/TMPBD-NDSBM


N
DVS128-Gesture CIFAR10-DVS N-Caltech101

Clean Static Moving Dynamic Clean Static Moving Dynamic Clean Static Moving Dynamic
Backdoor Detection Accuracy

NC [48] 50 100% 0% 0% 0% 0% 100% 0% 100% 0% 100% 100% 100%
ABS [49] 50 100% 0% 0% 0% 100% 0% 0% 0% 100% 0% 0% 0%

NS [49], [50] 0 100% 10% 50% 50% 60% 90% 50% 100% 60% 80% 0% 50%
MMBD [40] 0 100% 0% 80% 10% 100% 0% 30% 0% 80% 20% 70% 50%

TMPBD 0 90% 100% 100% 100% 80% 100% 100% 100% 90% 90% 90% 100%
Attack Label Detection Accuracy

NC [48] 50 100% 0% 0% 0% 0% 10% 0% 10% 0% 0% 0% 0%
ABS [49] 50 100% 0% 0% 0% 100% 0% 0% 0% 100% 0% 0% 0%

NS [49], [50] 0 100% 0% 10% 0% 60% 0% 0% 20% 60% 0% 0% 0%
MMBD [40] 0 100% 0% 10% 0% 100% 0% 10% 0% 80% 10% 0% 50%

TMPBD 0 90% 100% 100% 100% 80% 100% 100% 100% 90% 90% 70% 100%

TABLE II: Backdoor and attack label detection accuracy (%) of our proposed TMPBD against various defense methods across
three neuromorphic datasets (DVS128-Gesture, CIFAR10-DVS, and N-Caltech101), evaluated under four attack types: Clean,
Static trigger, Moving trigger, and Dynamic trigger. N denotes the number of samples per class used during detection. The
highest accuracy in each row is highlighted in bold.

engineer-based approach in SNNs is potentially due to the
exponentially larger search space of neuromorphic data.

By excision of the pattern, reverse engineering, and valida-
tion step, the NS shows acceptable backdoor detection accu-
racy, especially in two datasets transformed from the original
static image form. However, NS fails to locate the attack
target label even after detecting the attack. The MMBD is
worse at detecting backdoors compared to neuron simulation,
but locates the target label more accurately once the attack
is detected. The advantage is inferred from the robustness
of the MM statistic over the absolute value of FR during
optimization. The performance of those two defenses further
validates the theorem that the backdoor causes overfitting,
especially for the dynamically triggered attack samples. Our
proposed method improves over MMBD by utilizing the MM
statistic of TMP instead of FR, which is more informative.

B. Backdoor Mitigation

The backdoor mitigation defense aims to alleviate the effect
of the backdoor so that the poisoned model is no longer
sensitive to trigger patterns. In this experiment, we focus
on the DVS128-Dataset [44] with the corresponding SNN
model architecture [4] to compare the performance of different
mitigation strategies on different trigger types in a controlled
environment. The attack types involved in this experiment are a
clean control group, static trigger attack, moving trigger attack
[20], and dynamic trigger attacks [17].

The mitigation defense is evaluated by the ability to reduce
ASR while maintaining CA. In this experiment, ASR and
CA are evaluated by the test set, excluding the data involved
in mitigation and training to avoid optimistic bias and lack
of generalization. Furthermore, when assessing the ASR, the
test sample with the same label as the target attack label is
excluded following common practice [51] due to the inabil-
ity to identify the label because of the backdoor effect or

discriminative characteristics of the class. The mathematical
representation of ASR is shown below:

ASR =
|{(xi + δi, ỹ) | i ≤ r, yi ̸= ỹ ∧ h(xi + δi) = ỹ}|

|{(xi + δi, ỹ) | i ≤ r, yi ̸= ỹ}|
(16)

We adopt supervised unlearning-based fine-tuning defense
and clamping-based MMBM for SNNs for reference, as they
would require access to the label information of the small clean
set that violated our assumption on the defender’s capability in
the threat model. The necessary modifications to MMBM have
been made to accommodate the SNN situation. Specifically,
we set the weight amendment factor a = 1.2, the learning rate
to 0.1, the target CA to 85%, and the initial c = 1e − 5. As
discussed, due to the lack of activation and the threshold nature
of membrane potential in SNNs, the MMBM are modified to
max clamping the same weights as clamped by the proposed
mitigation. The training accuracy is calculated via MSE over
FR and one-hot encoded true label.

For the baseline, we modified the fine-tuning to use the
predicted label as a putative label for fine-tuning, referred to
as self-tuning. We also performed ablation tests on different
clamping methods of the proposed weight clamping approach:
max clamping, absolute clamping, and dual clamping. Finally,
we experiment with the combination of the proposed attack
label detection and dually clamping end-to-end backdoor
defense pipeline. Note that although NC can mitigate after
detection, the poor detection performance indicates that there
is no experimental value for further mitigation with NC.
Therefore, NC is discarded in the mitigation experiment. All
of the defense runs for 50 epochs and have access to the first
20 samples from each class (around 2/3 of the total testing
set).

The experiment is repeated ten times for each combination
with a different attack target label or random seed for clean
models. The average and standard deviation of CA and ASR



Clean Static Moving Dynamic
CA(%) ↑ ASR(%) ↓ CA(%) ↑ ASR(%) ↓ CA(%) ↑ ASR(%) ↓ CA(%) ↑ ASR(%) ↓

Original 97.65±1.03 0.31±0.99 98.09±0.99 100.00±0.00 97.21±1.29 100.00±0.00 84.71±12.48 100.00±0.00
Supervised mitigation methods requiring test labels

Fine-Tuning [50] 64.56±6.63 3.00±4.70 56.32±6.97 4.38±11.26 70.29±13.98 5.91±12.98 88.53±5.54 3.28±4.51
MMBM [40] 73.09±8.38 2.90±2.99 82.50±4.67 46.06±33.33 73.68±5.11 18.34±19.01 71.76±16.08 1.40±2.49

Unsupervised mitigation methods NOT requiring test labels
Self-Tuning [50] 7.20±3.13 11.44±19.89 5.88±1.39 9.06±20.29 7.20±2.81 15.72±19.66 6.47±1.73 25.56±20.18

Max Cla. 83.09±3.81 2.28±4.30 84.41±4.91 85.81±20.80 89.27±4.50 75.81±25.78 88.83±4.00 19.38±13.39
Abs. Cla. 84.26±4.75 1.34±2.09 83.82±7.47 84.22±16.31 87.21±6.05 68.13±26.15 89.12±2.52 20.81±14.50
NDSBM 72.50±6.43 3.69±10.27 72.21±6.56 30.41±25.92 83.38±8.29 29.87±19.92 89.86±3.21 8.44±9.91

TMPBD+NDSBM 97.06±1.55 0.31±0.99 96.33±3.12 19.94±26.48 95.88±3.00 38.12±35.44 92.06±4.29 2.81±3.95

TABLE III: The average value and standard deviation of CA and ASR before and after mitigation with our proposed NDSBM
and TMPBD+NDSBM frameworks against different backdoor attack mitigation defenses on the DVS128-Gesture dataset under
clean, static, moving, and dynamic triggers.

of different mitigation methods in different types of attacks
are shown in Table III.

For supervised mitigation, MMBM and fine-tuning outper-
form each other under different conditions with compromise,
where lowering ASR often lowers CA simultaneously. In
general, modified MMBM is more robust among supervised
mitigation methods, especially since original MMBM is more
computationally expensive to bypass [40] compared to fine-
tuning [17], [21]. The observation demonstrates the feasibility
of weight clamping. In a more practical but challenging
unsupervised mitigation setting, self-turning fails due to a
disastrous reduction in CA. The result shows that even with an
original CA as high as 97.65% on average, the accumulated
putative label’s small error destroyed the classifier’s original
behavior. Among all clamping approaches, dual clamping is
most effective in reducing ASR, although it has a slight
degradation in CA as a trade-off.

The main drawback of the proposed method is the non-
negligible drop in CA. However, there is a workaround that
only feeds suspicious samples to the clamped model. The
suspicious samples are defined as samples predicted to the
known attack target label by the compromised model. This
solution is based on the accurate prediction of attack target
labels, which has been achieved with our proposed TMPBD
method, with an accuracy of 100%. By combining the TMPBD
with NDSBM, the pipeline can nearly completely eliminate
backdoors in dynamic attacks and significantly reduce ASR
in other attacks with negligible degradation in CA.

VII. RELATED WORK

Backdoor defense research for SNNs is still in its infancy.
Most prior attempts simply port post-training defenses from
ANNs, yet the spike-driven computation, binary activations,
and temporally coded inputs of SNNs undermine their effec-
tiveness. We organize the literature by the defense mechanism
and highlight, for each category, the SNN-specific obstacles
that remain unsolved until our work.

A. Activation-Analysis Defenses

Artificial Brain Stimulation (ABS). ABS identifies neu-
rons strongly correlated with an attacker’s target label, recon-
structs a trigger, and tests it on clean inputs [49]. When frames
are collapsed for SNNs, the lack of ReLU “turn points” yields
many false positives [17].

Maximum-Margin Backdoor Detection (MMBD).
MMBD replaces ABS’s turn-point heuristic with MM
statistics of logits [40]. Although this removes the ReLU
dependency, the real-valued activations relied on by MMBD
are absent in SNNs, so detection accuracy degrades in SNNs.

B. Reverse-Engineering Defenses

Neural Cleanse (NC). NC searches for a minimal per-
class trigger and flags classes whose trigger is unusually small
[48]. In SNNs, the search space explodes (neuromorphic inputs
have an extra temporal dimension) and the binary spike output
provides little gradient guidance, so NC becomes prohibitively
slow and inaccurate.

Unsupervised Anomaly Detection (UAD). Xiang et al.
learn class-specific perturbations without training data and
apply statistical testing on the perturbation norms [52]. Their
optimization assumes softmax logits and has not been adapted
to spike trains.

C. Parameter-Repair Defenses

Fine-Pruning. Removing low-contribution neurons can ex-
cise backdoor-related units in ANNs [50]. Because SNNs
encode information in precise spike timings, nearly every
neuron is indispensable; pruning slashes CA while barely
reducing ASR [17].

Maximum-Margin Backdoor Mitigation (MMBM).
MMBM bounds suspicious activations during fine-tuning in-
stead of deleting neurons [40]. Porting the method to SNNs
requires clamping membrane potentials, which have not been
systematically studied.



D. Our Position in the Field

The above defenses either (i) depend on ReLU-style activa-
tions, (ii) perform gradient-heavy trigger search infeasible for
spike data, or (iii) degrade CA because they treat SNN neurons
like ANN activations. Our proposed TMPBD + NDSBM is the
first full-lifecycle defense designed expressly for SNNs and
overcomes each blocker:

VIII. THREATS TO VALIDITY

This section discusses the potential threats to the validity
of our experimental results and how we address or mitigate
them.

A. Scalability

One trade-off of any data-free backdoor detection method
is the additional computational overhead incurred by the gen-
eration and optimization of synthetic data used for detection.
However, we argue that scalability is not a blocker of the
proposed TMPBD. The backdoor detection of a classifier for
the DVS128-Gesture dataset is faster than model training (14
min 30 s vs. 18 min 45 s on RTX5090), while taking much
less VRAM. For backdoor mitigation, NDSBM takes only 2
min 24 s to mitigate the discussed model. Moreover, TMPBD
was cleverly designed to compute the MM of each class
independently, suggesting that detection can be sped up by
parallelization up to the factor of the number of classes, i.e.,
11 for the DVS128-Gesture dataset.

B. Adaptive Attacker

Here, we evaluate the robustness of TMPBD against adap-
tive attackers with defense knowledge. As discussed in Sec-
tion IV-A, TMPBD detects abnormal overfitting phenomena
resulting from backdoor attacks. Intuitively, an adaptive at-
tacker would attempt to suppress such a phenomenon to
bypass TMPBD. We consider two adaptive attack approaches:
amplitude-suppression adaptation (ASA) and peak-alignment
adaptation (PAA). ASA is designed to depress the absolute
membrane potential of the ATC. PAA, inspired by adaptive
attack from [40], attempts to align TMP of ATC with the
largest non-target TMP by minimizing the margin. In the
context of Figure 1, ASA blends the red line into the gray
lines, while PAA squeezes the red line closer to the cluster of
the gray lines.

Both approaches were achieved by introducing an additional
term controlled by a loss-penalty weight to the loss function
during the model training stage as follows:

LASA = LMSE + λASA Ex∼D

[∣∣∣ 1
T

T−1∑
t=0

V̂a,t(x)︸ ︷︷ ︸
ATC TMP

∣∣∣] (17)

LPAA = LMSE + λPAA Ex∼D

[
max

(
0,

1
T

T−1∑
t=0

V̂a,t(x)︸ ︷︷ ︸
ATC TMP

−max
k ̸=a

1
T

T−1∑
t=0

V̂k,t(x)︸ ︷︷ ︸
largest non-target TMP

)]
(18)
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Fig. 4: Statistical significance (p-value, left y-axis) and
performance (CA, ASR, right y-axis) of TMPBD under
(a) amplitude-suppression adaptation (ASA) and (b) peak-
alignment adaptation (PAA) on the DVS128–Gesture dataset.

We conduct the experiment on adaptive attack under the
same setting as empirical studies from Section IV-A, with a
static attack on the DVS128-Gesture dataset. From the results
shown in Figure 4, we observe that the detection cannot be
evaded unless we increase the penalty weight over a threshold,
which would effectively also drop the CA and ASR to an
impractically low level. Specifically, CA and ASR drop by
17.37% and 95.83% under ASA, 27.08% and 28.79% under
PAA to bypass the detection. Such drastic performance degra-
dation renders the backdoor practically useless, confirming
TMPBD’s robustness against these adaptive strategies.

Existing adaptive attack studies increase every non-target
logit (equivalently, every non-target TMP in SNNs) to reduce
the ATC margin, such as [40]. However, this approach intro-
duces significant computation overheads, making it impracti-
cal. While existing adaptive attacks mainly focus on margin
reduction, to our best knowledge, the distributed or timing-
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Fig. 5: Detection p-values of clean models with varying sample
counts from the target class (class 8) in the DVS128–Gesture
dataset, with 90 samples fixed for other classes.

based evasions in SNNs have yet to be explored.

C. Imbalanced Dataset

The majority of model-based backdoor detection algorithms
detect the overfitting of a small-sized backdoor pattern biased
the model toward the ATC. Apart from backdoor attacks, im-
balanced training data is another cause of overfitting, resulting
in a model biased toward the majority class. Past literature
suggests that MMBD falsely detects the clean model trained
on severely imbalanced data as poisoned [40]. However,
the experiment in Figure 5 shows that the detection results
in TMPBD are invariant as the imbalance level increases.
Training on more imbalanced data with more than double the
sample of a class over others is impractical, as it harms the
CA dramatically.

D. False Positive Issue

Although the proposed TMPBD outperforms all existing
defenses in the detection model with a backdoor. Detection
is still occasionally too sensitive, and the clean model was
misclassified as poisoned under the current default significant
threshold α = 0.05. The flaw can be resolved with additional
domain knowledge for domain-specific threshold tuning. This
additional information is accessible under the classical threat
model from the past literature. The results of significant
threshold tuning are shown in Table IV. Notably, for the
CIFAR10-DVS data, reducing α to 0.02 would lower the FPR
at no cost in the TPR, demonstrating the effectiveness of the
adjustment.

E. All-to-All attacks

The anomaly detection mechanism only validates the most
suspicious class in TMPBD to detect all-to-one attacks. How-
ever, we observe a phenomenon, shown in Figure 6, similar to
the previous literature [40], suggesting that the distribution of

Dataset α 0.05 0.02 0.01 0.005

DVS128-Gesture
TPR% ↑ 100 95 90 85
FPR% ↓ 20 20 10 10

CIFAR10-DVS
TPR% ↑ 100 100 100 95
FPR% ↓ 20 10 10 10

N-Caltech101
TPR% ↑ 95 95 90 90
FPR% ↓ 10 10 10 0

TABLE IV: True Positive Rate (TPR) and False Positive Rate
(FPR) across datasets for different significance thresholds α.
The defender aims to maximize TPR while minimizing FPR.

TMP MM of poisoned samples is distributed differently from
clean samples with slight overlap, which serves as the basis
for detection. The distribution was collected from ten clean
models and ten all-to-all static attack models on DVS128-
Gesture data. The attack pairs each neighboring class into the
source class-ATC pair (that is, the sample with source class 0 is
poisoned to class 1 with static trigger) [18]. We argue that with
access to additional domain knowledge that is accessible in a
common defense setting [49], we can calibrate the detection
threshold to detect an arbitrary number of target classes of the
backdoor in an attack of all-to-all or all-to-x without knowing
the number of attack classes. Shown in Figure 6, the ROC
curve of the margin-based detector with a full AUC of 0.8397,
which shows a strong overall discriminative power. The result
is particularly impressive given that this all-to-all attack is
not effective and only has ASR 63.86±15.46%. To our best
knowledge, there are no proposed all-to-all attacks for SNN
and we tried our best to adopt the current static [20] all-to-one
attack for the all-to-all setting. Note that doubling the poison
rate will counterintuitively not improve the effectiveness of the
attack and reduce the ASR to 11.81% and the dynamic attack
[17] failed in the all-to-all setting with 0% ASR. In particular,
the proposed NDSBM backdoor mitigation method does not
assume that the number of target classes remaining effective
in the all-to-all attack reduced the ASR from 63.86±15.46%
to 16.04±7.36%.

F. Intrinsic Backdoored Data

It has been an open problem to detect a backdoor attack for
a model trained with intrinsic backdoored data [40] for both
SNN and ANN. The intrinsic backdoored data describes the
data with class discriminative features that behave similarly
to the backdoor pattern. For example, the model designed to
classify if there is a backdoor in the sample always predicts
true in the present backdoor pattern, which behaves as a
backdoor-attacked model and will be detected as attacked.
However, the model is, in fact, as designed to be, and is
not under any backdoor attack. The phenomenon can also be
observed in overly simple classification problems where the
class discriminative features are as small as a few pixels. An
example is N-MNIST [46], which uses a classifier that can
make a high-confidence prediction based on a few pixels.
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target) vs. ATC. (b) ROC curve of TMPBD detection, achiev-
ing full AUC = 0.8397 on DVS128-Gesture under all-to-all
static attacks.
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Fig. 7: Heatmap of detection accuracy under grid search for
different numbers of parallel instances and numbers of epoch
with TMPBD for N-MNIST dataset.

TMPBD is incapable of distinguishing an intrinsic backdoor
from a real backdoor. However, by accessing additional do-
main knowledge, we can optimize an optimal detection hyper-
parameter to make TMPBD effective on such a dataset. Figure
7 suggests that optimizing the hyperparameters of n-epoch
and n-parallel on N-MNIST can lead to detection accuracy
of up to 97% via a ”few-shot detection”. We hypothesize
that the intrinsic backdoor can be distinguished by the rate
of convergence of the MM instead of the final optimized MM
value. We hope that our first indicative finding toward solving
this open question can inspire future research.

IX. CONCLUSION

This study addresses the challenge of backdoor attacks in
Spiking Neural Networks by proposing two novel defenses.
Temporal Membrane Potential Backdoor Detection (TMPBD)
leverages the Maximum Margin statistic of temporal mem-
brane potential to achieve unsupervised, post-training back-
door detection without the requirement of attack knowledge
or additional data. Neural Dendrites Suppression Backdoor
Mitigation (NDSBM) effectively reduces the backdoor effect
while preserving clean accuracy through dual clamping of
neural dendrites. The evaluations of the benchmark data sets
demonstrated the near-optimal detection accuracy of TMPBD
and the ability of NDSBM to lower the attack success rates
to as low as 2.81% on average with the help of TMPBD. The
proposed defenses have outperformed all the existing backdoor
defense techniques. The paper discussed the scalability and
robustness of the proposed model under an adaptive attacker.
The paper also illustrated that under a relaxed setting with
access to domain knowledge, the proposed approach can
be robust to imbalanced datasets, false positive issues, all-
to-all attacks, and intrinsic backdoored data with minimal
modification.
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APPENDIX

EXPERIMENT DETAIL

A. Details of Dataset

The experiment is carried out in the widely used neuro-
morphic benchmark datasets DVS128-Gesture [44], CIFAR10-
DVS [45], and N-Caltech101 [46]. The techniques involved in
backdoor attacks have been tested and have performed well in
the original paper proposing the attacks [17]. The benchmark
datasets are sufficiently complex for the classification task that
practically represents the real-world scenario. They also cover
a wide spectrum of data properties. The DVS128-Gesture
dataset consists of human gesture movements with 29 different
subjects under three different illumination conditions, directly
captured by a DVS camera that is closest to the real-world
situation. In contrast, the other two are pre-existing popular
static images in the computer vision research field converted
into neuromorphic data format via capture of the image
showing on an LCD display with a DVS camera perform-
ing Repeated Closed-Loop Smooth (RCLS) Movement [45].
Although the converted dataset is less practical, the CIFAR10-
DVS provides the possibility of performance comparison with
existing research in the field of ANNs, while the N-Caltech101
dataset contains 100 object classes plus one background class,
offering insight into the situation with a large number of
classification labels.

Following the optimal setting from the reference paper [17].
We employ the same training settings as the original paper.
Notable is the original paper choosing learning epochs of 28
for CIFAR10-DVS, 63 for DVS128-Gesture, and 30 for N-
Caltech101 to align with the same CA in SOTA research [53].

B. Details of Training Configurations

We adopted the commonly used corresponding network
architecture for the classifier to defend in the related works
[4], [17]. For the CIFAR10-DVS dataset, the network archi-
tecture comprises two convolutional layers, each followed by
batch normalization and max pooling. This is succeeded by
two fully connected layers with dropout, and a final voting
layer of size ten to enhance classification robustness [17]. In

contrast, the networks used for the DVS128-Gesture and N-
Caltech101 datasets consist of five convolutional layers (with
batch normalization and max pooling), two fully connected
layers with dropout, and a voting layer. Further architectural
details are available in our code repository.

C. Details of Backdoor Pattern

We follow the same recommended hypermeter for all attacks
in the original literature [17] for all datasets to ensure a con-
trolled environment and ensure that all attacks in all datasets
are effective and reach 100% ASR with nearly negligible CA
degradation. Specifically, for static triggers, the trigger patch
is located in the top left corner with a size of 10% image
with polarity=1. The attack pattern is static for all samples in
all time steps. The pattern is injected into 10% of the training
set. The moving triggers are initialized similarly, but move two
pixels to the right every time step. For the dynamic trigger,
we set a hyperparameter α, weight controlling the trade-off
between CA and ASR in the loss function, to 0.5 to evenly
balance CA and ASR. The visibility factor γ is set to 0.01 to
maximize stealthiness while maintaining high ASR and CA.
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